
Dr. Peter Graham
Executive Director - GBPN
Action Plan Development:

1. **Stock Taking**
 - Existing policies and policy context;
 - Transformational, Tools, Technologies & Designs
 - Work force skills & capabilities;
 - Information, Knowledge and Awareness

2. **Scenario analysis & Goal setting**
 - **MRV Base-line & Mitigation Scenarios**
 - Market Data and Assumptions
 - Best-Practice Scenarios
 - Co-Benefits Analysis

3. **Implementation Road-Maps**
 - Key Milestones & strategic targets
 - Capacity Building, R&D, Demonstration
 - Monitoring, Evaluation & Reporting

4. **Fundraising**
 - **MRV Requirements**
 - NAMA, World Bank, Dev. Banks, GEF
 - Bi-lateral and Multi-lateral funds
The Common Carbon Metric (CCM)

• Measuring Energy Use & Reporting GHG Emissions from Building Operations
• CCM protocol and Excel based tool
• Developed by UNEP: SBCI
• Meets the requirements that reporting is measurable, reportable and verifiable (MRV)
• Phase 1 pilot: 2010-2011
• Phase 2 pilot: 2011-2012
• Energy: kWh/m²/yr
 kWh/occupant/yr
• Emissions (equivalent (e)): kgCO₂e/m²/yr
 kgCO₂e/occupant/yr
CCM methodology

- **Top-down approach**: Performance of the *whole* (regional, city or national level) is characterized at a coarse level using *estimated* data on fuel and electricity consumption.

- **Bottom-up approach**: Performance of individual case-study buildings is characterized at a fine level using *measured* data on fuel and electricity consumption.

 - Ideally sample size will be statistically valid, enabling verification of the *whole*.
Data Required: Top-down approach

- **Floor Area** of the Whole (stock) (m²).

- **Total occupancy** of the whole (number of occupants, or number of residents where information on occupancy is limited).

- Information on the % of the Whole’s **occupants** and **building area** attributable to different categories of building stocks (%).

- At a minimum for: residential and non-residential buildings. Information on the **total amount of electricity** consumed by the Whole and on the amounts of **different types of fuels** used.

- Information on the % of the Whole’s **electricity and fuel use** that is **attributable to different categories of building stocks** (%).

- **Custom emission factors** may optionally be provided in place of the **default emission factors** for electricity and fuel use.
Data Required: Bottom up approach

- **Descriptive information**, including **building name, building category**, year of construction and year of last major retrofit, and address.

- **Occupancy** (number of occupants) and **area** (m2).

- Data on the **total amount** of purchased and **metered electricity** (in kWh).

- Data on the **total amount of different fuels** consumed (various measurement units).

- Custom emission factors may optionally be provided in place of the default emission factors for electricity and fuel use.

- Users may optionally report the **amount of purchased green power** or the **amount of renewable energy that has been generated on-site and returned to the grid**.
Case Study: GHG Baseline Kuala Lumpur Affordable Housing

Electricity-Related GHG emissions, and its Affordability in Malaysian Low-Cost Housing

Case Study of Two Public PPR Low-Cost Housing Projects in Kuala Lumpur

Data Used:

Top-Down: Total floor area of building stock and total occupants derived from National Statistics and Previous Studies

Bottom Up: Electricity bills of 383 household units, and a survey questionnaire of 281 households

Source: Zaid, S. 2013 *Electricity related emissions and affordability in Malaysian low-cost housing*
Results

<table>
<thead>
<tr>
<th>Performance Metrics</th>
<th>Bottom-Up Approach</th>
<th>Top-Down Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Energy Consumption</td>
<td>GHG Emission</td>
</tr>
<tr>
<td></td>
<td>kWh/m²/yr</td>
<td>kgCO₂e./m²/yr</td>
</tr>
<tr>
<td></td>
<td>kWh/occupant/yr</td>
<td>kgCO₂e./occupant/yr</td>
</tr>
<tr>
<td>PPR Beringin</td>
<td>44</td>
<td>531</td>
</tr>
<tr>
<td>PPR Intan Baiduri</td>
<td>42</td>
<td>508</td>
</tr>
<tr>
<td>Total</td>
<td>86</td>
<td>1,039</td>
</tr>
<tr>
<td>Average</td>
<td>43</td>
<td>519</td>
</tr>
</tbody>
</table>
CCM 2.0 Development

New features:
- Options for building policy scenarios
- Simpler methodology to 3CSEP-HEB
- Applicability to any country or city
- Modeling tool + data storage + LOD → growing coverage
- Data on existing policies
- Online vs offline mode

CCM 2.0

3CSEP-HEB Model

Common Carbon Metric

Floor Area Model
- Building types, vintages
- Performance-based approach
- Room for scenario analysis
- Default data & assumptions

Similar input data needs
- Simplicity of the methodology
- Emission factors
- Different levels of analysis
CCM 2.0: Coming Soon

ABOUT

Welcome to the Common Carbon Metric website for Energy Efficiency in Buildings

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed diam nonummy eirmod tempor invidunt ut labor et dolore magna aliqua erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

LEARN MORE

COMMISSIONED BY

IMPLEMENTED BY
1. Basic Information

Name of your Assessment

Please, select the approach you would like to use for your assessment

- Top-down
- Bottom-up
- Hybrid

Would you like to conduct baseline or future-lines assessment?

- Baseline
- Futureline(s)

Select a baseline

Specify the start and end year of your futureline

2014 to 2020

Type the name of your futureline

futureline 1

Please, indicate the level you would like to make the assessment for

- Region
- Country
- City
- District
- Portfolio of Individual buildings

SAVE & NEXT
Scenarios (BAU, Mod, Deep) can be predefined or user-customised, opportunity to create a number of scenarios by varying certain assumptions.

The tool can be applicable to **any region, at different scales**, new regions can be added, regional comparison can be enabled, default data/assumptions from 3CSEP-HEB model can be used.

Estimations can be made for a certain year (**base year**) or a timeline can be set by the user up to 2050...

The tool will allow for calculating energy use and related CO2 emissions from **FIVE END USES**: SH, SC, WH, APP, LIGHTING.

The tool can benefit from a comprehensive **climate classification** of 3CSEP-HEB model, a user can create their own (17 climate zones).

The tool can use the **building vintage** typology of 3CSEP-HEB model: new, existing, retrofit, advanced.

The tool can use the **building types** classification of 3CSEP-HEB model: SF, MF, Commercial (offices... etc), Urban, Rural.
Baseline Development that is expected without initiating any additional action to reduce emissions. The baseline is also referred to as ‘business as usual’,

Futureline While the baseline aims to present the current state, the futureline aims to predict the future scenarios.
Data Inputs for Bottom-up approach: space heating, cooling & water heating

- **SPACE HEATING**
 - Floor area per capita (base year)
 - Commercial floor area (base year)
 - Population projections
 - GDP projections
 - Retrofit & demolition rates
 - Energy intensities for SH
 - Fuel mix for SH
 - Emission factors for each fuel types

- **SPACE COOLING**
 - Energy intensities for SC
 - Fuel mix for SC

- **WATER HEATING**
 - Energy intensities for WH
 - Fuel mix for WH
Inputs for Bottom-up lighting & appliances

Data is available in the en.lighten initiative

LIGHTING
- Installed stock of lamps (base year)
- Lamps wattage
- Average daily operating hours
- Average lamp lifetime

APPLIANCES
- Sales data in the start year
- Expected growth by the end year
- Unit energy consumption
- Average appliances lifetimes
- Fuel mix for appliances

Emission factors for each fuel types
Data Inputs for Top-down approach: space heating, cooling & water heating

- Energy consumption in the building sector in the country
- Share of the energy use in the total energy in the country
- Share of the energy use for SH
- Share of the energy use for SC
- Share of the energy use for WH
- Annual growth in energy use for SH
- Annual growth in energy use for SC
- Annual growth in energy use for WH
- Fuel mix for SH
- Fuel mix for SC
- Fuel mix for WH
- Emission factors for each fuel types
Inputs for Top-down lighting & appliances

LIGHTING

- Electricity use in buildings
- Share of electricity for lighting
- Share of electricity use for lighting by building type
- Lamps wattage
- Average daily operating hours
- Average lamp lifetime
- Emission factors for electricity

APPLIANCES

- Energy use in buildings
- Share of energy use for appliances
- Share of energy use for each appliance category
- Expected annual energy use growth rate
- Fuel mix for WH
- Emission factors for each fuel types

Data is available in the en.lighten initiative.
Further application of CCM

- CCM has helped to establish a system of MRV indicators for the follow-up of policy implementation and reporting on building-related GHG emissions,

- **Nationally Appropriate Mitigation Actions (NAMAs)** To facilitate NAMAs, a globally consistent MRV methodology is essential to measure and track energy use and energy reductions from buildings.

- **CCM is able to support the establishment of baselines from the sector or sub-sector** (residential, commercial, etc.), thus allowing measurement over time of increased efficiency and GHG reductions from a particular building stock. (UNEP DTIE project - NAMAs for the Building Sector in Asia)

- **ISO standard** CCM has informed the development of an ISO standard on carbon metric of buildings (ISO/TC59/SC17).
Thank you!

Peter.graham@gbpn.org