Learning From CHP/WHP
Bright Spots

Bruce Hedman
Institute for Industrial Productivity
About the Institute for Industrial Productivity

The Institute for Industrial Productivity provides industry and governments with the best energy efficiency practices to reduce energy costs and prepare for a low carbon future.

• Sharing best practices, including policy experience, and providing access to a network of international experts.

• Developing original research, analysis and databases.

• Bridging the gap between government policy and industry implementation.
Cost of Delivered Electricity

Cost of Delivered Electricity - Illinois

- Medium CHP
- Large CHP
- Industrial Retail
- Commercial Retail
- Energy Efficiency
- PV
- Wind
- Pulverized Coal
- Natural Gas Combined Cycle
Average Industrial Electricity Prices
State Policies and Programs to Support CHP

• Standardized and simplified interconnection and permitting
• Reasonable standby and supplemental power rates
• Regulatory certainty related to emissions regulations
• Inclusion of CHP in Renewable and Energy Efficiency Portfolio Standards
• Specific Incentives to Promote CHP
• CHP for Reliability and Resiliency
• Utility Participation in CHP
Grid Interconnection

- The safety of the utility line personnel must be maintained at all time
- The safety of the equipment must not be compromised
- The reliability of the distribution system must not be compromised
Approaches to Reasonable Interconnection Standards

- Fees commensurate with system complexity
- Streamlined procedures with simple decision-tree screens (faster application processing for smaller systems and those unlikely to produce significant system impacts)
 - Maine’s Level 2 and 3 (2 and 10 MW) have timelines of 15 and 17 business days for utility approval
 - Kentucky’s Level 1 process requires utilities to notify within 20 business days
 - Ohio provides a checklist to determine “short form” or standard
- Practical and predictable technical requirements
 - New Hampshire does not require an external disconnect for inverter systems that comply with IEEE 1547 and UL1741
 - Delaware provides for expedited review for systems up to 2 MW that used lab certified equipment
Approaches to Reasonable Interconnection Standards

• Standardized, simplified interconnection agreements
 - Maryland’s application limited to 8 pages
 - Massachusetts has proposed a uniform on-line application

• Dispute resolution procedures to resolve disagreements
 - Massachusetts proposed requiring an arbitrator
 - Hawaii requires a meeting within 15 days of a written request

• Allow larger CHP systems to qualify under the standards
 - Connecticut has guidelines for systems up to 20 MW
 - California has standards for systems up to 10 MW

• Allow interconnection to both radial and network grid
 - New York has requirements for systems up to 2 MW on radial and secondary network systems
 - Texas standard rules apply to systems up to 10 MW on radial and secondary network systems
Standby Rates

• *Backup power* during an unplanned generator outage

• *Maintenance power* during scheduled generator service for routine maintenance and repair

• *Supplemental power* for customers whose on-site generation under normal operation does not meet all of their energy needs

• *Delivery* associated with these energy services.
Approaches to Reasonable Standby Rates

• Offer daily or monthly as-used demand charges for backup power and shared transmission and distribution facilities.

• Reflect load diversity of CHP customers in charges for shared delivery facilities.

• Schedule maintenance service at nonpeak times

• Allow the customer to address back-up needs with a load reduction plan

• In states with retail competition, allow customer-generators the option to buy all of their backup power at market rates
Output-Based Emissions Regulations

- OBR encourages energy efficiency and clean energy supply by relating emissions to the productive output of the energy-consuming process.

- The goal of OBR is to encourage the use of fuel conversion efficiency as an air pollution control measure.

- OBR can be designed to explicitly account for the multiple outputs of CHP.

- States can use OBR for:
 - Conventional emissions limits (state implementation plans)
 - Emissions limits for small distributed generation (DG) and CHP
 - Allowance allocation in emissions trading programs
 - Allowance allocation set-asides for energy efficiency and renewable energy
Texas Has Three Permitting Routes

- Standard Permit – applies to most EGUs
- Permit by Rule (PBR) – only applies to CHP systems
- Case-by-Case – applies to systems not eligible under the 1st two options
- Provides for a credit for CHP thermal output – based on a rate of 1 MWh for each 3.4 MMBtu of heat recovered
- To receive compliance credit, the heat recovered must be > 20% of the total heat energy output of the CHP unit
Texas Permit by Rule for CHP

- Expedited permit option for CHP systems powered by “pipeline-quality” natural gas-fired engines, including turbines
- CHP systems < 20 kW are exempt from permitting requirements
- To qualify, any individual CHP system or any group of units may not exceed 15 MW in capacity
- CHP systems from 8 to 15 MW must install an oxidation catalyst
- NOx limits are generally less stringent than those in the standard permit, and CO limits also apply
- CHP thermal credited same as under the standard permit
CHP in Clean Energy Portfolio Standards

- Renewable Portfolio Standards (RPS)
- Energy Efficiency Portfolio Standards (EERS)
- Alternative Energy Portfolio Standards (APS)

Approaches to incorporating CHP
- Include CHP as a generally eligible resource
- Establish separate tier for CHP
- Establish separate standard with specific subtargets for CHP
- Definitions for eligible technologies, fuels and minimum efficiency requirements
EERS that Include CHP

Source: Based on EPA CHP Partnership

MN EERS only includes WHP
RPS/APS that Include WHP

Source: EPA CHP Partnership

EERS that includes WHP: MN, OH
Approaches to Prioritizing CHP in Portfolio Standards

• Define CHP eligibility explicitly
 - Separate, distinct targets or tiers

• Binding targets are most effective

• Allow all technologies and all fuels
 - Minimum efficiencies or performance metrics

• Account for CHP’s benefits appropriately
 - Recognize both thermal and power outputs
 - Calculate CHP savings based on objectives
Specific Incentives to Promote CHP

- Technical assistance
- Capital incentives
- Feed-in tariffs
- Discounted natural gas rates
- Tax incentives
- Financing
Connecticut

• “An Act Concerning Energy Independence”, June 2005

• Customer CHP and DG Incentives
 - $450/kW, additional $50/kW in congestion area
 - Utilities receive $200/kW
 - Low interest financing
 - Natural gas distribution cost rebate
 - No back-up power for new systems

• More than 80 applications representing 300 MW between 2006 and 2008
California: Self-Generation Incentive Program (SGIP)

- Fossil fueled CHP reinstated in 2011
- GHG reduction is sole eligibility criteria. No size limits
- CHP, Waste Heat to Power, Pressure Reduction Turbines (in-conduit hydro) and advanced energy storage added and join wind and fuel cells.

Incentives:
- $1.25/W for wind, WHP and PRT. The “Renewable” Category
- $0.50/W for CHP, microturbine and gas turbine on non-renewable fuel. “Conventional” Category
California - Feed In Tariffs (FIT)

- California enacted a CHP FIT for systems less than 20 MW and with excess power (AB 1613)
 - Must be sized to thermal load and > 62% efficiency
 - Price tied to natural gas and time of day and season (Market Price Referent (MPR))

- Federal Energy Regulatory Commission (FERC) Rulings
 - CPUC’s FIT not preempted by FERC as long as generators are QF’s and the rate does not exceed the avoided cost
 - Approved multi-tiered rates (higher rates for higher efficiency)
 - Approvedadders for transmission constraints and environmental externalities
Massachusetts

- MA Alternative Energy Portfolio Standard – CHP is eligible technology
 - Target of 250 MW by 2020
 - $20/MWh equivalent
 - CHP credit includes electricity and thermal
 - Metered power output and useful thermal reported quarterly with independent verification

- Green Communities Act (2009) directs utilities to purchase all cost-effective efficiency and makes CHP eligible
 - **CHP KWh’s are credited to utility’s EE goals**
 - $750/kW rebate based on cost effective test (roughly need < $3000/kW, > 5,000 annual hours, full thermal utilization)
New York

- CHP technology demonstration and fleet program – Energy Efficient Power Systems
- Existing Facilities Program – pay for performance
- Multi-family Facilities Program – pay for performance
- CHP Accelerator Program
 - CHP Catalog of pre-approved systems
 - Up to 1.3 MW
 - Pre-approved applications (hospitals, hotels, multi-family) if within specific parameters
CHP Acceleration “Catalog” Program

Program Mechanism:

- Created a catalog of “pre-qualified” systems (systems in the catalog have been evaluated for reasonable component sizing and are comprised of reputable components; this protects use of public funds)

- Assigned a specific “rebate” to each system

- Inviting customers to shop from catalog
 - Streamlined approach to system sizing*
 - Customized approach to system sizing

* Via Rules-of-Thumb (for example):
 - a hotel with 300 guest rooms should buy 60 kW system
 - an apartment building with 300 housing units should buy 100 kW system
 - a hospital with 300 beds should buy 600 kW system

<table>
<thead>
<tr>
<th>Size kW</th>
<th>Downstate Incentive</th>
<th>Rate $/kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>$180,000</td>
<td>$1,800</td>
</tr>
<tr>
<td>300</td>
<td>$510,000</td>
<td>$1,700</td>
</tr>
<tr>
<td>600</td>
<td>$930,000</td>
<td>$1,550</td>
</tr>
<tr>
<td>900</td>
<td>$1,260,000</td>
<td>$1,400</td>
</tr>
<tr>
<td>1,200</td>
<td>$1,500,000</td>
<td>$1,250</td>
</tr>
</tbody>
</table>

Use of Best Professional Judgment, in absence of availability of Industry Standard Certification Process

Chillers are credited at their equivalent kW displacement
CHP Acceleration “Catalog” Program

Catalog Items:

- Clean and Efficient CHP
- Integrated Controls Package
- Built-in Data Monitoring Features
- Bumper-to-Bumper Warrantee
- 5-year Service Plan
- Capable of “stand-alone” Operability
Eligible CHP Vendors and Systems

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Model</th>
<th>kW</th>
<th>50 to 100</th>
<th>101 to 300</th>
<th>301 to 500</th>
<th>501 to 700</th>
<th>701 to 900</th>
<th>901 to 1300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aegis Energy Services</td>
<td>Agen Power Sync 75</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agen Power Vetlar 75</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agen Power Sync 150</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agen Power Vetlar 150</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEM Energy</td>
<td>IPS-65-CHP</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IPS-130-CHP</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IPS-195-CHP</td>
<td>195</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IPS-260-CHP</td>
<td>260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IPS-390-CHP</td>
<td>390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IPS-1000-CHP</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCPS-260-CHP</td>
<td>260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCPS-380-CHP</td>
<td>380</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IntelliGen Power Systems</td>
<td>IntelliGen 150</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IntelliGen 150 Inverter</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IntelliGen 250</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IntelliGen 250 Inverter</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraft Power Corporation</td>
<td>KMGR-SS-4SH</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KMGR-80-4SH</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KMGR-150-4SH</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KMGR-250-4SH</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSP Systems</td>
<td>C65-DM-ICHP</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C200-DM</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C400-DM</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C600-DM</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C800-DM</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C1000-DM</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tecogen, Inc</td>
<td>InVerde INV-100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InVerde Ultra INV-100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unison Energy</td>
<td>UE-600-H</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vecellia Energy</td>
<td>CGC-080MA-080-NG-60-3WY</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGC-0180MA-080-NG-60-3WY</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGC-0280MA-080-NG-60-3WY</td>
<td>280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGC-0310GU-080-NG-60-OXY</td>
<td>310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGC-0400GU-080-NG-60-OXY</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGC-0620GU-080-NG-60-OXY</td>
<td>620</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGC-1300CU-078-NG-60-OXY</td>
<td>1300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- All of these systems are capable of running during a grid outage.
- To receive an incentive, the system must be installed and commissioned showing it runs during a grid outage, and systems must be sited “high and dry” at buildings located in flood prone areas.
- Annual conferences for vendors and consultants, periodic expos for potential customers.
CHP Acceleration “Catalog” Program
Emergence of Resiliency as a Policy Priority

• Critical Infrastructure Resiliency is an Emerging Concern
 - In July 2012, CT establishes Microgrid Pilot Program in Response to the Two Storms Report (Hurricane Irene, Oct. 29, 2011 Snowstorm) (P.A. 12-148 Section 7)
 - NY Commission 2100 Report January 2013 calls for accelerated deployment of DG/Microgrids as component of future resiliency planning

• Business Continuity
 - Business downtime, economic losses (beyond traditional CI definition)
 - Cascading problems affecting transport (unavailability of gasoline in NJ post Sandy)

• Emergency Preparedness & Planning
 - Developers reporting inquiries from campuses looking to keep students sheltered
 - Nursing homes, public housing, large multi-family buildings keeping people “safe-in-place”
CHP Kept Critical Facilities Running During Sandy

- South Oaks Hospital - NY, 1.25 MW recip. engine
- Greenwich Hospital - CT, 2.5 MW recip. engine
- Christian Health Care Center - NJ, 260 kW microturbine
- Princeton University - NJ, 15 MW gas turbine
- The College of New Jersey - NJ, 5.2 MW gas turbine
- Salem Comm. College - NJ, 300 kW microturbine
- Public Interest Data Center - NY, 65 kW microturbine
- Co-op City - NY, 40 MW combined cycle
- Nassau Energy Corp – NY, 57 MW combined cycle
- Bergen Wastewater Plant – NJ, 2.8 MW recip. engine
- New York University – NY, 14.4 MW gas turbine
- Sikorsky Aircraft Corporation – CT, 10.7 MW gas turbine

Electric Utility Participation in CHP

- Alabama Power – 500+ MW of CHP at large industrial sites owned by Alabama Power
- Missouri Joint Municipal Electric Utility Commission – joint ownership of CHP assets at ethanol plants
- Austin Energy – sole owner and operator of CHP plants at Domain industrial park (4.5 MW) and Dell Children’s Medical Center (4.4 MW)
- Gainesville Regional Utilities – owns and operates the South Energy Center, a 4.3 MW CHP system that serves Shands Cancer Hospital at the University of Florida.
- United Illuminating pilot program paired third party developers with interested customer; encouraging 5 to 10 year power purchase agreements between parties
Gas Utility Participation in CHP

• Discounted natural gas rates
 - California
 - Connecticut
 - Hawaii
 - New Jersey
 - New York

• Philadelphia Gas Works – PGW pays for initial feasibility study, and finances equipment and installation costs. Total costs and cost of capital are recovered in monthly gas bill over a five year period. Customer pays equivalent of current gads and electric bills until repayment is complete.
Utility Participation Issues

• Rules to ensure non-discriminatory access by third parties wishing to enter the CHP market in the utility service territory

• Financial controls to prevent cost shifting to non-CHP customers

• Policy determinations on how to treat CHP-related earnings for rate making purposes

• Models for joint utility-customer ownership of CHP assets